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Estimates Away From a Discontinuity 
for Dissipative Galerkin Methods for 

Hyperbolic Equations 

By William J. Layton* 

Abstract. We consider the approximate solution of the initial value problem 

au = au 

by a dissipative Galerkin method. When v is taken to have a jump discontinuity at zero, that 
discontinuity will propagate along x + t = 0, in the true solution u. Estimates in L2 and L. 
of the pollution effects of the discontinuity are found. These estimates show those effects to 
decay exponentially in h-' in regions a fixed distance d from the discontinuity and 
exponentially in d for fixed h. 

I. Introduction. In this paper the question of approximating, by Galerkin meth- 
ods, discontinuous solutions to the initial value problem 

(1) aut = a", u(x,O ) = v(x), 

is considered. Here v is taken to be an L2(-co, oo) function, smooth, except for a 
jump discontinuity at x = 0. This discontinuity will propagate along the character- 
istic x + t = 0 of the true solution u(x, t) = v(x + t) of (1). 

In the usual, continuous in time, Galerkin method for (1) a subspace Sh of 
H (-oo, xo) is chosen and the approximate solution is computed as a differentiable 
map uh: [0, T] -> Sh by 

auh3 
(2) at =(DUh,c ) for 4 Sh, D = ax 
(3) uh(0) E Sh, an approximation to v, 

where (, ) denotes the usual inner product on L2(-co, co). 
The usual Galerkin method is not appropriate for the solution of (1) with v(x) as 

described for several reasons: 
(i) The rate of convergence of the method (2), (3) depends upon the global 

smoothness of u. Here u is piecewise C X but globally only L2. 
(ii) The usual Galerkin method is a strictly conservative method with an infinite 

domain of dependence. Experience with such methods indicates that the approxi- 
mate solution will be hopelessly polluted by the discontinuity in u even far away 
from that discontinuity. 
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For these reasons a dissipative Galerkin method will be considered for the 
problem (1). Estimates of the error outside a neighborhood of the discontinuity will 
be derived for this method. These estimates imply, for example, that the error for 
(1), outside a neighborhood of x + t = 0, has two parts, the first being the error 
applied to smooth solutions of (1). The second component is the pollution effect of 
the discontinuity. This part is shown to decay exponentially in h-' for regions a 
fixed distance d from the shock front and exponentially in d for fixed h. 

II. The Method. We shall choose as Sh the space of splines of order ti of at most 
power growth. Define, following, e.g., Schoenberg [11] and Thomee [13], the B- 
splines of order y > 2. Let X be the characteristic function of [-4, 4]. For ti > 2 
define 4 and N by 4 = x*', 4(x) = 4(h-'x - 1). Sh is taken to be the space of 
splines of at most power growth 

Sh = { E Cll: Cl = (IIq) as II -X> for some q}. 

We shall consider a nonstandard Galerkin method for the problem (1). This 
method is similar to a method first proposed by Dendy [5] and analyzed by 
Wahlbin, [17] and [18], who proved convergence for smooth solutions of some 
linear and nonlinear hyperbolic equations. This method adds dissipation to the 
usual method by use of a nonstandard variational principle. 

We shall seek uh: [0, T] Sh, as a differential map satisfying 

(4) ( Duh - D , - hDck) =0, I E Z, 

(5) uh(O) = Ihv E Sh. 

By Ih in (5) we denote the spline interpolation operator, that is, Ihv is that element 
of Sh satisfying (Ihv)(jh) = v(jh),j E Z. 

Next some results concerning the method (4), (5) shall be collected. Using 
techniques developed by Thomee [13] and Thomee and Wendroff [15], Wahlbin 
[17] has shown that the solution operator, Gh(t), to the Galerkin equations (4), (5) 
factors as Gh(t) = IhFk(t), where Ih is the spline interpolation operator and Fk(t) is 
a finite difference operator. 

For ti > 2 and integer a, 0 < a < 2ti - 2, define the trigonometric polynomials 
00 

g(-) = hO-1(-i)O-2p Z (D"040, D`01)e-il, 
1= -oo 

with v = [a/2]. Note that the factor h'-' makes g,0 independent of h. The next 
proposition collects some useful results of [17] concerning the method (4), (5). 

PROPOSITION 1. Let Gh(t) be the solution operator to (4), (5). For X > 0 fixed, 
k = Xh, consider t of the form t = nk. Then Gh(t) factors as 

Gh(t) = Ih(Fk)n, t = nk > 0, 

where Ih is the spline interpolation operator and Fk is a finite difference operator with 
symbol 

a(O) =exp( 
ig 

(O ~ 
- 

exp(XP(9)), 

(g(#k + ig,%) 

where Re P(9) < -C92A, for 0 < 101 < ST, and Im P(9) = 9(1 + Q(02A)) as 9 ->0. 
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Proof. See Wahlbin [17]. [II 
From this one obtains that Fk is accurate of order 2p - 1, dissipative of order 

2p, and stable in L2 and L.. Further, L2-optimality of the error follows; for more 
details see Wahlbin [17] or [18]: 

THEOREM 1. Suppose the approximate solution to the initial value problem (1) is 
computed using the method (4), (5). Then there is a positive constant c such that, for 
v E HI(-o, o), 

max IIU(t) - Uh(t)I1L2 < ch" max IIu(t)IHP 
O < t < T 2 O < t < T 

Proof. See Wahlbin [17] or [18]. 0ii 
In the following, the 12,h norm shall denote 

IIV112. = h E v(jh)2. 
j = -00 

Also for t = nk we shall write (Fk)' as Fk(t). 

III. Discontinuous Initial Data. In this section the problem outlined in the 
introduction is considered. The initial data is taken to be an L2 function vanishing 
for positive x with a jump discontinuity at zero and smooth on (-oo, 0). The case 
of a function smooth on (- oo, 0) and (0, xo) with a jump at zero may be reduced to 
a function vanishing for positive x by subtracting a smooth function agreeing with 
the initial data on (0, xo). The analogous work on this question in finite difference 
theory was carried out in [1], [3], [6], and [12]. These estimates are shown to hold in 
the finite element case as well. This work depends upon using spline interpolation 
theory to derive estimates upon the error in interchanging spline interpolation and 
multiplication by a characteristic function. 

To be more specific, the true solution of (1) for such a v(x) vanishes for x > -t. 
Therefore U h(X, t) is estimated in terms of the distance d of x, parallel to the x-axis, 
to the shock front x + t = 0. If , denotes the characteristic function of (y, ce), we 
estimate IIt,uh(t)IIL2 and IIX_tUh(t)I IL. The basic result is that these two 
quantities decay exponentially in d for fixed h and exponentially in h-' for fixed d. 
An analogous result can be shown for functions v(x) vanishing on the other side of 
the shock front. These results, with Theorem 1, are then combined to give the result 
announced in the introduction. 

THEOREM 2. Suppose the approximate solution of (1) is computed using method (4), 
(5) with 1i even. Suppose also v(x) E 12,h n L2 n L. and that v vanishes for positive 
x. Then there are positive constants C, c, and a (C and a depending upon [i) such that 

(6) IIXd_ua(t)IIL. ? C vL h"2 exp(-h'd) + exp(-cn 
min{d,t, d,})I1vI112, 

with t = nk > 0, dt = dt-'. Also K = 2p/(2p -1). 

THEOREM 3. Suppose the hypotheses of Theorem 2 hold. Suppose also IxLav(x) E 

L.jforsomea > 0. Then 

(7) di_tUh(t)IIL. 
-< 

CIIVIIL. exp(-athd 

+ ChalK exp(-cn mint dtK, d,})11 IxIavIIL. 

holds for t < T, with d,, C, c, a, and I as in Theorem 3.1. 
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Proof of the Theorems. Note that Xdt,uh(t) = Xd-,IhFk(t)v. We would like to 

interchange Ih and multiplication by Xd-t To do so the error in interchanging these 
two operations must be estimated. To this end, consider the cardinal spline 
interpolation problem: 

For ti even, we seek Lh(x) E Sh satisfying Lh(x) E L,(-oo, oo) and 

Lh (jh)= {O ~fj 0O 

The following basic result is known about this problem [10], [11]. 

THEOREM 4. For ,u even, there is a unique Lh in Sh. Furthermore, there are positive 
constants A and a, depending upon ti, such that 

ILh(x)I <A exp(-ah-'Ixl), x E R. 

Also, for C = (cj) E I., the unique function Sh(x) in Sh satisfying Sh(jh) = cj, 
Sh(x) E L. is given by 

00 

Sh(x) = E CjLh(x -jh), 
j = _Oo 

the series converging absolutely and uniformly on each compact interval. El 

This shall be used to produce the desired estimate. For a function f(x) E Lo,o 
expand Ihf and Ih(XyI) using Theorem 4: 

00 

(Ih f)(x) = 2 f(jh)Lh (x -jh), 
j =-00 

00 

Ih(Xy f)(x) = E f(jh)Lh (x -jh), 
j=J 

whereJ = min{ j: jh >y}. Thus, 
J- 1 

I(Ihf)(x) - Ih(Xyf)(x)l = 2 f(jh)Lh((x -jh) 
j= -00 

J- 1 
<AlIfIIL E exp(-alxh- -jj). 

J = -00 

Settingy = d/2 - t and considering only x > d - t gives 
00 

IIhf(X) - Ih(Xd/2-tf)(X)I ? CIf IIL exp(-axh') E exp(aj) 
(8) j -00 

S CAf%L exp(-ah-'(x -(d/2 -t))). 

Thus, (8) gives a pointwise estimate and an L2 estimate 

Ihf - 
Ih(Xd/2-tf)L.(d-t,oo) < ClflL exp(- 2 hId), 

Ihf - Ih(Xd/2-tf)11L2(d-t,oo) < CIIfIILjh/ exp(-2 hId). 

Now return to the problem at hand. For d > 0 and p = 2, oo, there follows 

(10) 11IhXd-,Fk(t)VL,4(-.,.) S<+ IIh(Xd-,Fk(t)V)(tL)(d-t (d) 

+ llXdl2-t(,hFk(t)V) Ih(Xd12-tFk(t)V)11I,(d-too)- 
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These two terms shall be estimated separately. Since spline interpolation is a 
bounded linear operator between L., and L. and between L2 and 12,h (but not L2 
and L2) [8], [11] we have 

( 1 1) II~1Ih(Xd-1Fk(t)V)ll L2 S C ||Xd_tFk (t) Vl12,h' 

11 Ih(Xd_ tFk(t)V) 11Loo < C ||Xd tFk(t)V11|L. 

Finite difference theory shall be used to estimate the above two quantities. 
The finite difference problem has been addressed in [1], [3], [6] or [12]. In [3] 

estimates on IIxd-tFk(t)vII p are derived forp = 2 and oo using inequalities for the 
symbol a(#) of Fk in a neighborhood of the real axis. If Fk(t) is considered as a 
Toeplitz matrix active between 12 and 12 instead of L2 and L2, these estimates on 
a(#) may be used to derive 12 estimates on xd_,Fk(t)v. Specifically, using the 
notation of Theorems 1 and 2, there follows 

(12) IIXd tFk(t)vIIl2. < exp(-cn min{dt, do})IIvll,2h. 

The corresponding L. estimate in [3] reads 

(13) IXd-t,Fk(t)v11L00 < Cha'/ exp(-cn min{dtK, dtJ)IIXLaV11L. 

The theorems now follow by settingf = Fk(t)v in (9), (10), using the fact that Fk 
is stable in L., and using inequalities (9), (10), (11), (12), and (13). E1 

Remarks. A corresponding analysis may be carried out for fully discrete schemes 
and for other methods of introducing dissipation into the Galerkin method. For an 
analysis of either case or more details upon the present method see Chapter 3 of 
[7]. Also, corresponding results may be shown for jt odd by posing the interpolation 
operator and the finite difference operator at midpoints rather than at the knots. 
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